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Abstract

The problem of designing an optimal state estimator for a
linear, discrete-time system with a singular noise covariance
matrix is considered. In this article, this problem is cast as
a constrained optimization problem and the approach appears to
be more direct. Solution to this optimization problem gives a
reduced-order optimal state estimator.

I. INTRODUCTION:

In a linear stochastic system, the two parts, one to be estimated by a reduced-
output measurement may be only partially order filter and the other to be recovered
noise corrupted. Although, in practice, exactly from the noise-free measurements.
one may argue that there exist no noise- Then the dynamic equation of the latter
free measurements, it is quite possible part of the state equation is considered a
that some of the measurements are noise constraint on the optimal estimation of the
corrupted while the others are relatively other part of the states. Hence the state
accurate. Under the Gaussian assumption, estimation problem in this case is cast as
this implies that the noise covariance a constrained optimization problem, which
matrix has both large and small eigen- leads to a reduced-order optimal state
values, which easily leads to numerical estimator.
difficulties in the implementation of the
Kalman filter. It is convenient in this -2. PROBLEM FORMULATION
case to model these more accurate measure-
ments as noise-free entities. A linear, discrete-time stochastic

The study of this problem dates system can be described by the following
back to the work of Bryson [11, for con- equations
tinuous-time systems, and that of Braimer x(k+l)-A(k) x(k)+B(k) u(k) k-0,1,2,... (1)
(21, for discrete-time systems.
Kwakernaak [3] and Anderson [41 discussed y(k) - C(k) x(k) + v(k) , k-1,2 .... (2)
this problem as a singular linear state
estimation problem; however, no explicit where x(-)¢ Rn, u(.)c RP , and y(*)¢ le.
solutions were given. Tee and Athens [5] To further specify the problem, the follow-
derived a rather complicated "observer- ing assumptions are made:
estimator" which is essentially an exten- (i). x(0), u(0), u(l),...,v(l), v(2),
sion of the Luenberger observer [6. -.... are independent random vec-
Later, Yoshikawa [7] gave a simpler deri- tor* with the following statistics
vation for minimum-order optimal state
estimators. More recently, Fairman [81 Z[x(0)3ix 0  R(x(0)XT (O)IVx
proposed a "hybrid estimator" which 0
features "coordinatization" and achieved Zju(k)]t0 Vk B[u(k)uT(k-i)]
a reduced-order optimal estimator. -i

The main feature of the approach V u(k)6(i) Vki
used in this paper is the following: T
After a proper similarity transformation, Xjv(k)]u'O Yk Z(v(k)v (k-i)]
the state variables are decomposed Lnto .... ......
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-Vv(k)6(i) Yk.i + [v(k)]

Elu(k)vT(i)]=0pxm Vk,i Z[u(k)xT(0)] where

0 pxn Tk 1(k) - Q(k+l) A(k) d-l(k)

E[v(k)xT (0) - Omxn Vk a(k) - Q(k+l) B(k)
and

where uT( .} and vT(.) denotes the trans- t(k) - C(k) d-l(k}
pose of vectors u(-) and v(-), respective-
ly, and 6(-) deontes the Kronecker delta. n m2  mI  m2

(ii) For any k, the V v(k) is a non- z1(.)c R ,z2 (-)c R ,yl(-)e R ,y2 (-)c R

negative definite matrix with and n An-m2 .  (-} (.) and (.) are par-
rank mi, where mI-m. Under 1

this assumption, implementatiorl titioned accordingly. Moreover, since C(k)
of the standard Kalman filter is of full rank, 2(k) is invertible.
involves inversion of a matrix 22
which may be singular. Tee Hence there exists a one-to-one correspon-
and Athens [51 proposed an ob- dence between the state z2 (k) and output
server-estimator of order n-m2  Y2(k), namely

which performs as well as higher

order estimators, where m2Am-mI. Z2 (k) c (k) y2 (k)

(iii) For any k,the C(k) is of full and thus in the state equation, (4), only
rank, i.e. every element of the zl(-) must be estimated. The dynamic
output measurement is indepen- equations for zl(-) and z2 (-) are
dent of the others.

The objective here is to design an Z(k+l) = l(k)(k) + 1(k)z(k)+(k)u(k)
optimal state estimator of order n-m2. 1 l1kl 12 2 1

Without loss of generality, one can assume (7)

that z2(K,l) = 721 (k)zI(k)+12 (k) z2 (k)+92 (ku(k)

v (k) r [1~] m (8)
whr e It is obvious from (7) and (8) that z1(k)

where vI(k)c R , and thus the covariance and z2(k) are mutually dependent; there-

matrix of v(k) can be written as fore the estimation of z1 (k) does depend

rV (k) 10 1 on the dynamic behavior of z2 (k). Thus

Vv(k) = 1. . the filtering problem becomes that of find-
, ' Xm1  2 X J ing an optimal l(k+llk+l) subject to (7)

where Vv (k) is strictly positive definite. ab(k+l )v I and constrained by (8), where (klk+l)

It is easy to see that there exists denotes the estimate of zl(k+l) given
a non-singular matrix 0(k), such that the measurements up to time k+l. Note, from
transformation (6) and (7), that the state z2 (k) can be

z(k) - 0(k) x(k) (3) regarded as a deterministic input in the

yields the following state and measurement Kalman filtering problem.
equations

1kl .[- 1k (k. (k1TH REDUCED-ORDER OPTIMAL
- z1 ~k.a. ~ 1  A12(k 1 k STATE ESTIMATOR

L I A)lk :2 In this section, the optimal estima-
tor for zl(k) is derived where the perfor-

+rlk)u(k) (4) mance measure is the trace of the error[J k covariance matrix. Defining the vector
s(k) as

and

Y 1 (k)I ll(k) I 1 2, [1 (k)l (k) A z1(k) - P(k) z2 (k) , P(k)e ,RI? - - - -T k 9
1 2

"kT [ .xn i2(k) '12 '2kTJ from (5), (7) and (8), one obtains

- -,L
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a(k+l)-F(k)s(k)+G(k)z2 (k)+M(k)u(k) (10) +K(k+1)V v (k+l)K (k+l ) (16)

and where

Yl(k)-H(k)s(k).+N(k)z2 (k)+v 1 (k) (11) r(k+l)AF(k)V(kk)T(k) M(k)Vu(k)MT(k)

where (17)
F(k) (k) - P(k+l) O(k) observe that r(k+l) is essentially the

(l0.a) one-step prediction error covariance matrix
G(k) 1 1 2 (k) - P(k+l) A 2 (k) + F(k) P(k) (9]. An optimal estimator is taken to be

an estimator which minimizes the trace of
(10.b) the error covariance matrix. Therefore,

it is left to minimize Tr[VZ(k+llk+l)]
M(k) - l(k) - P(k+l) W2 (k) (10.c) with respect to EK(k+l)*P(k+l)]. Notice

H(K) = C(k) (ll.a) that here K(k+l) plays the role of stand-
11 ard Kalman gain while P(k+l) is the

and Langrangian of the optimization problem.
N(k) = !1 2 (k) + 51 1 (k) P(k) (ll.b) Minimizing Tr[VZ(k+l k+l)] with respect to

Notice that P(k), as defined in the above K(k+l) yields
equations, can be viewed as the Lagrange K*(k~l) - r(k+l} BT(k R-l(k+l} (18)
multiplier in the standard constrained
optimization problem. Now, the problem where R(-) is the positive-definite symne-
of estimating z1 (k) is replaced by that of tric matrix given by

estimating s(k) given the measurements R(k+l) - H(k+l)r(k+l)HT(k+l}+Vv(kl)
fyl(l),yl(2),....yl(k)) and states (z2 (l), R H

z2 (2),....z 2 (k)). From (9), it is obvious (18.a)

that Observe that (15)-(18) are identical to
*(klk) = (klk) - P(k) z2 (k) (12) the formulation of the standard Kalman

1 filter [9]. However, in this case, it is
and further required to optimize the state

V; (kjk) - V?-(klk) (13) estimator with respect to the choice of
a1  P(k+l); i.e. minimize Tr[Vi(k+llk+l)i with

where A(klk) denotes the estimate of s(k) respect to P(k+l). Let the optimal P(k+l)
conditioned on input-output measurements which minimizes Tr[Vi(k+llk+l)] be denoted
up to time k, and by P*(k+l). Then it can be shown that

'i(klk) 2 I(klk) - s(k) P*(k+l) c Z*(k+l) (19)

Z(klk )  1 1 (klk) - z(k) where 2*(k+l) is the set given by

V-(kjk) Z E[;(kIk)i"(kjk)] Z*(k+l) - (P: P A1 (k)-A 2 (k), P Rn 1 Xm2 )
(19.a)

The unbiased linear estimator of s(k)
is given by the following n th-order A (k) - 21 (k)V;(kIk) l(k)+19(k)Vu(k)Sf2(k)

filter (19.b)

*(k+l)Ik+l)-[l-K(k+l)H(k+l)]F(k)h(klk) A2(k) - 2l(k)V;(k k) l(k)+il(k)V(k)B'(k)
*K(k4l) [Yl(k+l)-a(k+l) X2(k+l) (19.c)

1ykG(kl)z (kl) z2(1) Notice that, when A1 (k) is non-singular,

-H(k~l)G(k)z2(k)] (14) P(k+l) is given by

Hence the error quantity i(k~k) propagates PC(k l) - A2 (k) A
1(k) (19.d)

as 2 A1 ~, (9
(k~l~k.l)-.[I-K(k+l)H(k+l)]P(k);(k~k) The set 3"(k+l) will be discussed in the

+ (z-K(k+l)H(k+l) JM(k)u(k) next section.
Once P*(k+l) is found, the matrices

-K(k+l)v1 (kql) (15) r(k), G(k), and 3(k) can be specified and
denoted by Pr(k), Q*(k), N*(k), respective-

and the error covariance matrix V-;(.I') is ly, by substituting Pe(k+l) and P*(k) into

given by (10). Similarly, r*(k+l). r*(k+l) and
Re(k+l) can be obtained from (ll.b), (17),

V-;(k+lIk+l)-[I-K(k+l)H(k+l) Jr(k+l) and (18.).

.- -[IIK(k+l)H(k+l)IT All in all, the reduced-order optimal
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state estimator in formulated by the fol mation 0(-) of (3) is equivalent to 3 (-)
lowing equations defined in (14) of [81, and thus the state

A variable z defined in (3) can be regarded
a(k+llk+l) - [I-K*(k+l)H(k+l)lF*(k)#(kik) as equivalent to.C defined in (14) of [8].

Furthermore, the'variable s defined in (9)
+ K(k~il) (yl(k+l) - N(k+l) can be similarly related to the variable

z (k+l) - H(k4l)Gk)z (k)] 9, in (20) of[81.

2 2 The relations in (19) which govern
(20.a) the choice of P1(k+l) are vital to the

('klikl - l.~lkl P*(~z(k+l) understanding of the optimal state esti-~ z 2 (k1 mator, and thus deserves some detailed
(20.b) discussion. First, notice that

z(k+l) L.2lY4 2.)h(A (k)) a h(A (k))

v-(kl~kl) (I-~k~)H~~l)1~k.-l)where h(A (k)) and h(A (k)) denote the null
Z (20.d) spaces of A 1(k) and A 2(k), respectively.

K*jk+l) =r*(k+l)HT~~)Hk~~*kl The following observation is thus made:
(k~l)(H~kl~r*k~l)observation The set Z*(k+l) given in (19.a)

_H (k+l) + Vv (k~l1J_ 1 (20) is a non-empty set. Moreover, if A I(k) is
v1 singular, any member P(k+l) e Z*(k+l) yields

the same estimator performance.
r*(k,l) F *(k)V..(klk)P* T W + M*(k)V (k) Now, according to the value of A()

T the following special cases are of interest:
* M*T(k) = [I:-P*(k+l)1[X (kc) Case 1: A (k) - 0 mx~ In this case,

V kk ~)+ W(k)V.(k)%T(k)] A 2( n al and thus
1 2

*[I:-P* (k+l1)]1T (20.f) n 1xm 2where Z*(k+l) - R

Fv* (k~k) 1 0 This case is possible if (8) does not con-
Vkl - - - m2 tamn any information pertaining to the

z 1 X 0'2m2n estimation of z 1(k); for example, if

due to the fact that z 1 (k) i. exactly 2(k -O 2 xn Iad9()-O 1 .A x

measurable for every kc. Also, the error treme example for this case is that m
covariance matrix V-(k+llk+l) is given by 0, i.e. all measurements are noise corrupt-

Z ed. In this condition, the estimator pre-
*V (kl =kl (*kl) 1 +Hkl sented in Section 3 is identical to the

5~I~) L~(~) Tkl standard fullAuorder Kalman filter whose

V (k~l) H(k+l)F' (20.g) pefrimance is independent of the choice

- ~and P*(k+l) is specified by Eqs. (19). Cae2 1 k m2 xm2ie 1()i
singular non-zero matrix. In this case.

4. COMMETS ON THE REDUCED-ORDER only some components of z 2(k) contain in-
OPTIMAL ESTIMATOR formation about Wuk), z I(k)). Thus the

The formulation for the optimal state similarity transformation discussed in
estimator derived in last section, (19)- Section 2 can be redefined so as to iso-
(20), is identical to that of the "hybrid late only those elements of z 2(k) which
estimator" given in [81, except that in cnttt osrito uk. kj
(8) a deterministic input is inserted to cnttt osrito uk. 1 k~
the system dynamics. However, the Hence the Lagrange multiplier P(k+l) that
approach here is more straightforward and should be considered is an element in
it is clearer here that the choice of R (n-rxr, where r <3m Alternatively,

*P(k+l) is crucial to the optimality of the 2'
* estimator. It can be seen that the gen- any member in 1*(kel) can be used in the

oral coordinate transformation discussed filter realization.
*in [81 in split into two coordinate trains- Case 3: A I(k) is positive-definite. This

formations: one which depends on the sys- condition can be fulfilled when V (kc) is
tern output matrix H only and one which u
depends on the matrices P1 n 1 . i positive-definite for any kc - 0,.,2..

can be seen that the similarity transfor- nticae ?(l) otisoead
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only one element P*(k+l), which is given random sequence," IEEE Trans. Automat.
by (19.d). Contr., vol. AC-13, pp.198-199 ,

When P*(-) is uniquely specified April 1968.
(Case 3), one can compare the error
covariance matrix given by (20.g) with [31 H. Kwakernaak and R. Sivan, Linear
that obtained for arbitrary P(-) and oh- Optimal Control Systems. Wiley Inter-
serve the same expression for VZ(k+llk+l). sciences, 1972.

The difference is that ]*(k+l) of (20.f) (4] B.D.O. Anderson and J.B. Moore, Opti
has the following property mal Filtering. Prentice-Hall, l979.

Trmr*(k+l)1 < Tr [r(k+l)]

where r(-) in obtained from non-optimal [5] E. Tne and M. Athens, "Optimal mini-

mal-order observer-estimators for

Finally, the implementation of this discrete linear time varying systems,"
IEEE Trans. Automat. Contr., vol. AC-

estimator should be initiated as follows: 15, pp.416-426, Aug. 1970.

" (0j0) = E[x(0)] - x 0  [6] D.G. Luenberger, "Observing the state

i.e. of a linear system, IEEE Trans. Mil.
9l(010) = E[zl(0)] Elec., vol. MIL-8, pp.74-80, April,

therefore 1964

1 _x2 = filters for discrete-time linear sto-
[(0) 0mlxn =Q [7) T. Yoshikawa, "Minimal-order optimal

(0) chastic system," Int. J. of Contr.,
vol. 21, pp.1-19, Jan. 1975.

" ' and
and [8] F.W. Fairman, "Hybrid estimators for

P*(0) = n discrete-time stochastic systems,"
-m :IEEE Trans. Sys. Man., and Cyber.,

5. CONCLUSION vol. SMC-8, pp.849-854, Dec. 1978.
[9] J.. Meditch, Stochastic 0ptimal

A reduced-order optimal state esti- Linear Estimation an Control.
mator for a linear, discrete-time system New York: McGraw-Hill Book Co., Inc.,
associated with a singular noise covari- 1969.
ance matrix has been derived in this paper.
The main idea in this derivation is to ACKNOWLEDGEMENT:
cast this singular state estimation problem
as a constrained optimization problem. The authors wish to express their
The estimator derived here is fundamental- appreciation to Dr. R.N. L.u for his val-
ly the same as that derived by Fairman [8]. uable comments during the course of this
The major differences are: the app oach work. This research is supported in part
here is more straightforward, the optimal- by the U.S. Army Research Office under
ity of the estimator is more explicitly contract DAAG 29-79-C-0024, and in part by
exposed and, furthermore, the possibility the Office of Naval Research under contract
of nonuniqueness of P*(-) is discussed N00014-78-C-0444.
here.It is worth mentioning that the esti- 4/000
mator given here requires lower order
matrix inversion than the standard full-
order Kalman filter does in the singular
case; thus the computational efficiency
is improved. This estimation procedure
can be applied similarly to smoothing and
predicting problems or systems with colored
noise.
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